100% Cationic (EPV) UV-curing versus not-100% Cationic UV-curing varnishes

Characteristics	100% Cationic	not 100% cationic like Radical
Solvents free and thus low pollutant	+++	+++
Initiator for polymarisation (resin)	Acid	Radical
Breakdown products photo initiator	Long lasting	Short lasting
UV-curing	Reaction continues after initial UV exposure as the acid	Upon UV-exposure free radicals are formed and initiate a
	diffuses through the still liquid layers if any are left	(chain) reaction that react with the double bond rasins.
		Process stops when UV-exposure is stopped
Oxigen interference in UV-curing process	No	Yes
Humidity interference in UV-curing process	Possible, but heat will increase post-curing after drying	Little as curing is only during UV-exposure
In case of not full curing	Curing continues after UV-exposure	Irritation to skin
General risk potential	Lower than not-100% cationic varnishes	Higher than cationic varnishes
Volume contraction (shrinkage)	3-5%	5-15%
Odour of liquid and cured varnishes	Less than not-100% cationic varnishes	More than cationic varnishes
Adhesion on plastics (Polymer)	Very good	Average
Adhesion on cotton-based papers	Very good	Average
Abrasion resistance	Excellent	Average
Ink-wear protection	Excellent	Bad - average
Chemical resistance	Good	Not known
Environmental impact	Very low due to free of solvents and continued curing	Low due to free of solvents
	after UV-exposure	
Machine cleaning properties	Easy cleaning as per feed back from printers	Not known
Raw material prices	More expensive	Cheaper than 100% Cationic

Sources:	
"UV-radiation curing Technology" by Edwin Tafelmeier; Coates.com, Research and Development	
"UV Cationic Cure Release Coatings", Craig Adhesives & Coatings, Newark (USA)	
"What is Cationic UV Technology?" by Dr. Richard M. Podhajny, PhD et al; Published Sunday, 29 February 2004	